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SUMMARY /_-

In 1930, B. Thuering published an approximative theory of long-

period motion of the Trojans as a restricted three-body problem. With

this theory we can approximate the periodic orbits for all amplitudes

in such a favorable manner that the remaining deviations are at most

of the order of the mass of Jupiter (< 10 -3). Thuering's solution pro-

vides a starting point for an exact theory of the plane long-period Trojan

orbits according to the method of the variation of constants. Special

attention is devoted to the borderline case, in which the periodic orbits

around L4 and Ls overlap. This boundary orbit and its adjacent orbits

run into the infinitesimal Charlier orbits around L 3 -- more specifi-

cally, into those of the hyperbola type.
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THE LONG-PERIODMOTIONOF

THE TROJANS,WITH SPECIALATTENTION
TO THE THEORYOF THUERING*

by

Karl Stumpff

Goddard Space Flight Center

INTRODUCTION

The first comprehensive attempt at devising a theory of periodic motions around the Lagrange

libration centers L a , L2 , • • •, Ls in the restricted problem was undertaken by C.V.L. Charlier around

the turn of the century. This was a short time before the discovery, in 1906, of the first Trojan (the

planet 588 Achilles) lent practical meaning to this problem which formerly had been of interest only

to the theoretician. Charlier's theory merely considered infinitesimal orbits around the libration

centers, i.e., orbits whose distances from the libration center remain so small that their squares

can be neglected. Charlier showed that there are two families of infinitesimal periodic orbits around

L 4 and Ls (whichform an equilateral triangle with the two finite masses sun and Jupiter)in the rotating

coordinate system (in which the sun and Jupiter hold fixed positions on the x-axis); each of these two

families of infinitesimal period orbits consists of a group of concentric, coaxial, and similar ellipses.

In each family, the rotation time of all members is equal° The short-period orbits of one family have

rotation periods which are only a little longer than those of Jupiter (T o = 11.86 years) and which

converge on this value, if we allow the Jupiter mass to decrease toward zero. Their ellipticity coef-

ficient b: a deviates only slightly from the boundary value 1:2, toward which it tends when m approaches

0. The minor axis is pointed at the sun (with minor deviations which also disappear when m goes to 0);

the major axis thus lies roughly along the tangent of the Jupiter orbit at L4 (or L s respectively).

This family of short-period libration orbits has a very simple meaning which was apparently ac-

corded little attention in the literature. Let us consider a planet moving around the sun in an (undis-

turbed) elliptical orbit whose semimajor axis and rotation period are equal to those of Jupiter

(a = 1. T = To) and whose eccentricity e is so small that magnitudes of the order of e 2 canbe neglected.

Thus the orbit of this body in the rotating system is a small ellipse around a fixed point

of a circle of unit radius, its ellipticity coefficient is 1:2, its major axis is tangent to the

*A lecture given at the Goddard Space Flight Center, July 27, 1961.

tNAS-NASA Research Associate; Professor Emeritus, G_ttingen University.



circle of unit radius, and its rotation period is T0. The family of the short-period libration orbits

around L4 or L s thus converges if we allow the disturbing mass of Jupiter to decrease toward zero

toward a group of Kepler ellipses with the same rotation time, the same perihelion longitude and the

minor eccentricity e, which serves as group parameter.

The orbits of the second family -- called Trojan orbits -- are concentric to and coaxial with the

former. If m is the mass of Jupiter measured in units of solar mass, we have the following approxi-

mation: b: a = 3f_m, T = TO_-/27m as the common ellipticity coefficient and the common rotation time

of the orbit ellipses. Form = I/l,047, we get b:a = 1:18.7 T = 148 years.

Attempts to extend the theory of the Trojan orbits to noninfinitesimal areas around L4, L5 were

soon undertaken, such as the work by H. C. Plummer, E. W. Brown, and others (References 1 and 2).

These investigations, confined to the consideration of the squares of the planetoid coordinates in re-

lation to the center of libration, revealed a deformation of the orbit ellipses as the distance from the

center increased: (1) a slight shift of the center on the circle of unit radius, that is, in the direction

away from Jupiter; (2) the symmetry line of the orbit hugs the circle of unit radius; (3) the curvature

of the orbit in the greatest elongations on the side facing away from Jupiter is stronger than on the

side near Jupiter. On the other hand, the rotation period - considering first-order terms -- remains

unchanged and begins to increase gradually only as the libration amplitudes grows and as second and

higher powers of the coordinates are considered.

AN IMPROVED TROJAN ORBIT

The first attempt at obtaining a clearer picture of the Trojan orbit of arbitrary amplitude width was

made as early as 1911 byE. W. Brown (Reference 1), who introduced the polar coordinates r, ¢ (where r

is the distance from sun, and ¢ the difference of lengths of the planetoid and Jupiter). And he was able

to show that r - 1 and ¢ are, at most, of the order of_, while _ and _ are at most of the order of m,

etc. Thus the orbit lies in the vicinity of a circle of unit radius (Figure 1); and if we use _ to designate

the average libration amplitude (the average distance of the Trojan from the libration center in the

maximum elongations), then a ¢_ is the order of magnitude of the maximum distance of the Trojan from

the circle of unit radius. In addition, Brown succeeded in estimating the distances of the Trojan from

the libration center in the elongations; in particular he found that, if % = 60 ° is the length of L4 (re-

lated to the longitude of Jupiter), the longitude of the longest elongation on the side facing away from

Jupiter approaches 180, while that of the elongation near Jupiter decreases to about 24 °. We thus have

a boundary orbit in the family of the Trojan orbits around L4 which, in the elongation facing away from

Jupiter, reaches to the opposite point of Jupiter relative to the sun and there meets the corresponding

boundary orbit around Ls, although the elongation of the boundary orbits on the side near Jupiter re-

mains separated from Jupiter by a longitude difference of about 24 °. The elongations of the boundary

orbits of L 4 therefore are 120 ° and 36 °, respectively, and the deviations of these orbits from the circle

of unit radius are of the order of _ _ 1/30.

The motion theory of the real Trojans, of which nine around L 4 and five around L s have become

known thus far, has been worked out by various authors, of whom we shall mention only E. W. Brown



Figure 1-Family of periodic Trojan
orbits. The deviation of the curves

from the unit circle is exaggerated.

(Reference 3) and A. Wilkens (References 4 through 7). These theories concern the spatial movement

of these planets, including all perturbations due to Jupiter and other planets, especially Saturn. These

orbits are not periodic. In the plane restricted problem - a problem of the fourth order represented

by two differential equations of the second order, every libration around L 4 (or Ls) is composed of two

independent motions which have the characteristics of the two Charlier families (expanded to noninfin-

itesimal regions). In this problem we have periodic Trojan orbits with rotation times (equal to or

greater than 148") obtained by setting the initial conditions so that the short-period component van-

ishes. Thus these periodic Trojan orbits are solutions of a second-order system.

THUERING'S WORK ON LONG-PERIOD LIBRATIONS

Owing to Thuering's work (Reference 8), we now have an approximated theory of these long-period

librations. Simply and clearly, this theory gives intermediate orbits, whose deviation from the exact-

period orbits does not exceed the order of m even in the boundary case. Thus these orbits can be used

as approximations for an exact theory and therefore provide a very clear picture of the shape of the

orbits and the form of motion within them.

In a plane coordinate system, x, , Yl are the rectangular, heliocentric coordinates of Jupiter which

moves around the sun in a circular orbit (radius _,, = 1). Thus, for Jupiter, we have:

r, : 1, the radius vector = 5.20 A.E.,

_l = n, (t - t 0) , the mean length,

-- _ the true length;Zl 1,

and we may let nl = _ for the mean motion in the time unit, if we set this time unit as equal to

(5.20)3/2/k average days. We also let x, y be the rectangular coordinates and r, Z the polar coordin-

ates of the Trojan.



As elementsof theosculatoryorbit of theTrojan for anytime t, weintroduce:

a = major semiaxis,

e = sine = numerical eccentricity,

= length of the perihelion.

Furthermore, let M be the mean anomaly, so that l = K + 2e sin M + terms of higher order in e,

where K = n (t - to) = a -3/2 (t - to) is the mean longitude of the planetoid.

Using the canonic elements of Poincare,

L = }/_, k -- M + _,

p = 2 }/asin2(¢/2), q = -w ,

we obtain the following differential equations for the motion:

dL aF dp aF

dt - ak ' dt - 3q '

where the Hamilton function

dX aF dq aF

dt = dL ' dt - -_ ' (I)

F =

_-+ m

From Figure 2 we have

s 2 = 1 + r 2 - 2r cos_P ,

XXl + YYl = r cosy ,

= 1- l 1

= _ - k I + 2esinM + '''

= a + 2e sinM + ''"

Now, in the osculatory orbit Brown showed that

e sin v
=

C (1- e2)

TROJAN

SUN a - 1 JUPITER

Figure 2-The triangle sun-Jupiter-Troian.



where _ is, at most, of the order ofm (for v = 90°). From this it follows that e is also the order of _.

Therefore we shall develop F into a power series of e,

F = F 0 + eF 1 + e 2 F 2 + .." ,

where F o is free of the eccentricity e. However, F : F (r,w), for, if we set up a : al ( 1 * ,: ) = 1 + ,,

r = a (1-ecosE), ¢ = a+2ecosM+ "'" ,

And for e : 0 we have

F : F (p, a, ecosE, ecosM, ""1 .

F o : F 0 (P,)_)

= F o (p, c_)

1 I__ 1
= 2(1 pf + r_

1 +p)(1--cos_) + p2 - (1 +p) cosa I
(2)

The differentialEquations 1 are limited to the second order system, if we neglect magnitudes of

the order of e, and of the order of rn :

dL OFo d_ 0Fo

(It - ak dt = -_L- '

or if we set up

L = 1/1-+p ,

they are limited to

: a + llf[---;--_ (t-to) ,

dp -- 3Fo
dt - 2 I/l+p 3c_ '

d_ _ OFo

dt = _ + m + 2 ¢1 +P O; (3)

The remaining two equations of Equation 1 are now superfluous, since p vanishes and q : -:, be-

comes meaningless when e = 0.



If in Equation2 wenowignoreall terms of theorder m2(notingthat .,2is of theorder of rn),weget

and

F0 = 2(1+/:) +m_sin_

OFo

Oct = m a cos _-+ (1 +p) sina
4 sin 2 _-

: m sin ct - a + P + '

8 sin 3 -_ 16 sin 3

' G' )= m _ + CON ct "

dp 2(1 +p)2 sin_-

From the preceding two equations and Equations 3, we get

dp I1 1 /1 1/1
dt : 2rn {1 + p sina a + P + a

8sin 3 7 16sLn 3 "_- (4)

and

dt - (le#) -a/2 - _+m + 2rn _ a + cosa
sin 7 (5)

If we differentiate Equation 5 again with respect to time and replace dp/dt with Equation 4 and then

ignore all terms of the order of m2, we obtain

dt 2 = -3m(l+p)-2 sina ct +P +8 sln3_ 16 s;n3-_

(1 1-2m {[ +p sina + -all-
16 sin 3

(6)

But according to Equation 5, we have

da 3
dt - -'2-/_ + terms of the order of m, and also, _2, (7)

6



p and da/dt thus, as we said before, are of the same order _. If we now ignore in Equation 6 all

terms of the order m2, _ ;2, rn p(da/dt ), we may, from Equation 7, let

2 da
/_' : -3 dt

(8)

and instead of the two differential equations of the first order (Equations 4 and 5), we obtain one dif-

ferential equation of the second order for _ ( t ):

-- + f(_) _-_ +dt 2
= 0

where

( 1/f(al : 4rr sina 1 Ct

8 sin3_ - (9)

The solution of Equation 9 also determinates p from Equation 8 (except for terms of the order m).

The integration of Equation 9 can be accomplished in the following elegant manner. We have a

known function of Ct,

Now, if we let

act

dt - _(a) * _Y(_) , (10)

it suffices to determine y(a), for afterwards ;( t)is obtained from Equation 8 and a(t) by squaring

Equation 10. From Equation 10, it follows that

d2c_ de dy

dt 2 - dt + dt

(.__ d_y_ da: de + -a'd-_)_-F

= dy _ f(a) _- •



If we insert the above equation into Equation 9, we get

d>" da 3
d_ dt +-_f(c_) : 0

or

d_, 3 f(ct)

(11)

If, for the moment, we set

3
'_:' + 7 - 4u ' (12)

we find that

d d>'
da I¢,+ 'y) = - f(a) +Z_

3 du

4u 2 d_ ;

or, if from Equation 11, we set

d?
Ha -uf(_),

we find that

d.__U_U: 4
da 3- fu2 (1 +u) ,

i.e.,

du 4 f (r_)d,_
u 2 (1 +u) 3

This equation is integrable and, if % is an arbitrary constant, we obtain

4 1 u
T(4"-/:o) : u + l,, 1 +u



If, instead of ,,,we again introduce ? from Equation 12, we get

4 1
-T(?o + y) = In 4

or

e-{4/3) (co+T) +_(,}+_y = 1 , (13)

an equation which determines ? : v (_, ¢o) • Since from Equation 10, _ is of the order of m and ? :s

of the order _f_,we can solve Equation 13 by using a rapidly converging power series. From Equation

13 and

4 d_. 4
Y 3 dt - 3 (_+?,1,

4
= _-(¢ - ;;0)

we have

e -y (l,y) = e -Z

i.e._

I 1 1 , 1
1 -_y2 +_y3 _ 8Y ..... 1 - z +_z 2 .... ; (14)

and to a first approximation,

y2 _ 2z = _2 ,

where

= i 2_-z.

Therefore we can set up a power series of _ for y and by comparing coefficients we obtainthe fol-

lowing from Equation 14:

17_2 +-_6 -y = + _ _- _3 1 _4



or, if we neglect terms in _4 and higher terms (which are at least of the order of vn2) we get

4 da

We now have the approximation

(Jcc

dt 3(, 1)2

g/@ 1 2= ± I_- ¢ol _ -]-(¢

where for real orbits

¢
2 sin_-/

(15)

(16)

THE MOTION OF THE TROJANS

The motion takes place in such a manner that % the longitudinal difference between Trojan and

Jupiter, fluctuates between two limits % =>a 2 . These boundary points, which are return points be-

tween the clockwise and counterclockwise motions with respect to L 4 , are given by da/dt = O, (i.e.,

¢ = _o). This equation, when x = sin (_/2), can also be written in the algebraic form

i Ii ¢o_ Ix3 -T x -W_-mJ +T = 0 (17)

Equation 17 has, at most, two real roots in the range 0 < _ _-<180 °, thatis: for 0 <x 21; for 4o - -2m the

double root is x = 1/2, a = 60 °. For this value of the parameter ¢o, a is constant, therefore the plan-

etoid remains constantly in L4. For the boundary orbit, we have the maximum elongation x = 1 in the

side away from Jupiter when % = 180 ° (i.e., for ¢o -- -6m). The corresponding second root of Equation

17 results from % = 23.°9. Figure 3 shows the position of the return points for different values of '/o

between-2m and-6m.

The maximum angular speed of the Trojan relative to L 4 occurs when d2a/dt 2 = 0, because,

from Equation 9, f(e) : 0, since da/dt +3/4 is not equal to zero. But this condition is met for

sin a/2 = 1/2 (i.e., a = 60°). The angular speed thus reaches its maximum if the planetoid, seen

from the sun, passes the libration center. When a = 60 ° we get ¢ = -2m from Equation 16 and hence,

we get _-¢o = 4m for case of the boundary orbit (% = -6m}. If we insert this result in Equation 15

10



#

--2m ........... 7

-4m

--6rn
0

-e.

23.9" 60°

(L4)

_1 omal

90 ° 180"
(L3)

• INFINITESIMAL ORBIT

- SMALL AMPLITUDES

- LARGER AMPLITUDES

BOUNDARY ORBIT

Figure 3--Limits ofa, for Trojan orbits of different amplitude.

and if we consider that the time unit was so selected that TO : 27, and if we use the mean day as the

unit of time, we get for the maximum angular speed in the boundary orbit +23:'4 and -21'.'9 daily,

respectively.

Since p is proportional to -&, it follows that the motion occurs in the positive sense (counterclock-

wise)when the Trojantraverses that part of its orbit which lies within the orbit of Jupiter. The motion

around L 4 (this also applies to L s ) is thus counterclockwise, and the angular speed is somewhat greater

on the inside than on the outside part. Thuering gives a rougher approximation to the solution of

9_
Equation 14 and obtains &m,. = ± 22.5, as a medium value.

The rotation time in the periodic orbit can be obtained through integration of Equation 15. From

we get

dt : ± 3C 1 ±_

t -t o = + ( 1 2
_o _ 1 ± _

which means that the time for the inside orbit arc is

max

4 da

P] = T 1 2 ;

11



and the time for the outside orbit arc is

P2

_max

= 34--f _
1"-

min

Therefore the total rotation time is P : P1 ÷ P2"

Since the motion of the Trojan is always very slow even in the boundary orbit, we find, on the

basis of the Jacobi integral y2 : 2_ - c, that the orbits are always near the Hill zero speed curves:

2_- C = 0 and approach these curves particularly closely at the return points. Every Trojan orbit

is therefore enclosed between two neighboring Hill curves with slightly differing values of C. From

this we can conclude that the boundary orbit, whose outermost limit is at _ - 180°, will run into

that Hill curve which represents the boundary case between the isolated, bean-shaped curves around

L 4 and Ls and the horse-shoe-shaped curves which surround the two libration centers. This bound-

ary curve has a double point in L 3 , the libration center which is situated near the point of the x-axis

(x - -1, y - 0) opposite Jupiter, and has the abscissa

x - -1 + (7/12)m (except for the terms of the order of m2).

CONCLUDING REMARKS

According to the Charlier theory we have two families BOUNDARY
ORBIT

of orbits around Ls, as well as around all other libration \
centers; one of these families is periodic and, in the infin- \itesimal range, consists of concentric, coaxial, and similar

ellipses whose ellipticity ratio for m _ 0 is transformed into \
b:a = 1:2 and the rotation time becomes T0. Like the fam-

ily of the short-period orbits around L, and Ls, this family

represents slightly eccentric Kepler ellipses which are

little disturbed by Jupiter. The second family consists of TR
nonperiodic orbits, which can be represented in the vicinity AN

S

Tof L s by a group of concentric, coaxial, and similar hyper- R
O

bolas or, rather, by two groups whose common asymptotes J
A / /

touch the above mentioned Hill boundary curves in Ls. _/ /

These conditions are shown in Figure 4; there is no doubt
! ,
!

that the pointed hyperbolas in the upper and lower sector of /
the figure belong to those Trojan orbits around L 4 and Ls,

which in the boundary orbit approach each other to infin-

itesimal intervals. The boundary orbit itself makes the

junction at L3 and is represented by the asymptote pair in

the infinitesimal range. Thuering's theory, which provides

only an approximation, alsogives z = 0, for 5 = 0 (i.e., the

Y

T
BOUNDARY

ORBIT

S

(L S)

Figure 4--Infinitesimal region around L
showing the Trojans, Boundary orbit and
Transtrojans.
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boundary orbit according to this theory does not make the junction at L 3 , but at the opposite point

(-1, 0) of Jupiter). The deviation however is of the order m -- the order of the terms neglected in

Equation 7.

The second group of hyperbolas, whose shape is flat, and which fills the right and left sector of

Figure 4, has as common main axis the x-axis itself, and all these hyperbolas thus intersect the x-

axis at right angles. They are tangent there to those periodic orbits which jointly enclose L 4 and L5

and must be considered as continuations of the two groups of Trojan orbits beyond their common

boundary orbit. We can use the term "Transtrojans" to describe the planetoids which would run on

such horse-shoe-shaped orbits. As a matter of fact, these Transtrojanorbits are among the periodic

orbits of the restricted problem -- and we can obtain them by numerical integration of this problem's

differential equations, if we start from a point on the x-axis which is near L 3 at slow speed perpendic-

ular to the x-axis; and if we vary the speed until the orbit turns back on itself.

Thuering's later attempt to arrive at a periodic orbit starting from the point (-1, 0) when } - 0,

therefore was unsound and necessarily unsuccessful.
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